
Accelerators Controls Experience
1. Background - Cooperation with DESY-FLASH/XFEL and ESS

1.1. Controls @FLASH/XFEL and DMCS participation
1.2. Controls @ESS and DMCS participation

2. Best practice in design and implementation?
3. Lesson learned with respect to controls ?
4. Controls migration experience ?
5. What requirements did you get/not get (and should have) for

previous controls projects?
6. What languages and frameworks have you used for writing user

applications?
7. git repository structure: what products have you used; what are

their differences?
8. experience with uTCA

1

W. Cichalewski (wcichal@dmcs.pl), W. Jalmuzna
on behalf of LUT- DMCS team

DESY controls and DMCS
● DESY is using different hardware platforms for various applications,
● RF/LLRF systems mainly based nowadays on MTCA.4 standard,
● DESY initiated (together partners) MTCA.4 efforts and is involved in

standard development and popularization,
● successful migrations between different technologies VME (DSP) ->

VME (FPGA - Simcon) ->(ATCA)->MTCA.4 (current implementation),

● for software: DOOCS is used as a leading CS framework (but also TINE
and EPICS are used in dfferent subsystems)

2

source: doocs.desy.de

DESY controls and DMCS
● DMCS have been involved in LLRF system HW dev. since early 2000,

● Co-design FPGA based HW platforms for controller realization,

● co-design VME form-factor and ATCA (transition state) then MTCA.4

modules (together with ISE-WUT)

● participated in FW/SW development from controller algorithm

implementation, device drivers and user applications preparation up to

the GUI design.

3

ESS controls and DMCS
● ESS has chosen MTCA.4 architecture

as a leading hardware platform for:
○ RF/LLRF,
○ Beam instrumentation,
○ timing,
○ others.

4

● Base for control system - EPICS,
● dedicated ESS EPICS

Environment (E3) framework for
IOC management documentation
and deployment.

source: H. Carling ICS-ESS

ESS controls and DMCS
● DMCS involved in LLRF system co-design, integration, testing and delivery as a

part of PEG (Polish Electronic Group) together with WUT and NCBJ,

● PEG delivers Polish in-kind to ESS project,

● DMCS designed and delivering MTCA.4 module for piezo driver operation for

spoke and elliptical cavities,

● Implements protection algorithms for icBLMa and nBLM systems (for nBLM:

firmware, for icBLM: firmware, EPICS IOC, Phoebus GUIs)

● Integrates RTMCarrier AMC module (by NCBJ) used for piezo driver and

LocalOscillator (WUT) management and operation - functional FW, system driver,

IOC module and GUIs included,

● provides integration of the IPMI functionality in E3 environment (using openIPMI

library,

● others

5

Best practice in design and implementation

6

● code and hardware review should be controlled by project masters
(code review),

● use known firmware framework and use off-the-shelf/vendor provided
modules, libraries and IPs,

● integrate CI wherever you can,

● keep design and implementation core team consistent - to many
rotations can lead to “vision” changes and constant systems
requirements changes,

● plan ahead required functionality placement (firmware - HW level,
middle layer - still RT or fast, user application slow control). This will
allow to plan better for HW design,

● always leave HW resources overhead for functionality improvements,

● hardware You use for design is already “old” for operation phase.

Controls migration experience

7

● Usage of standard frameworks (such as AXI on FW level) makes it easy to
migrate,

● Migration between FPGA families from one vendor is easy
● Migration to the systems with the same type of interface (PCIe, ETH) easy.

Since we were not using well known FW framework or frameworks had one
project life time, it was not easy in our case - even if systems are using the
common hardware.
In most cases architecture of FW is independent (even for different projects within
same institute).

Example: DESY LLRF -> ESS LLRF -> ESS BLMs.
Almost same HW 3 different FW frameworks

What languages and frameworks have you
used for writing user applications

8

Languages:
● VHDL (FPGA Level)
● Verilog (FPGA Level)

● C (embedded and control system)
● C++ (control system and FPGA Level - HLS, drivers, user applications),

● Python (UA prototyping)
● Matlab/SciLab/Octave (not a language - user application prototyping and

evaluation)

Frameworks (we rather used custom solutions):
● e3 (Epics at ESS)
● AXI based FW framework

Many other tools and libraries…..

What requirements did you get/not get (and
should have) for previous controls projects

9

● various experience concerning requirements definition and review,
● “no initial specification” approach possible for system design/implementation - but

lengthy (and costly),
● functional (and some non-functional) requirements management and reviews are

essential for successful system implementation and integration - especially in
case of in-kind collaboration work model,

● some non-functional requirements can be specified early and save extensive
integration costs later,
like eq. general:

○ compliance with given ISO or ANSI standards,
○ CE marking,

or project specific:
● deployment strategy/policy,
● naming conventions,
● FW/SW/GUI development guidelines/standards,
● etc

GIT
● independent projects for functional parts
● shared libraries moved to separate repos and included as submodules
● Makefile flow

Tools (GIT “frontends”, which simplify collaboration)
● GitLab (see picture on next slide)

○ user friendly interface - please upload your profile picture ;)
○ “I like this commit ! “
○ Comments to the code, but general code review seems not to be clear

● Gerrit (see picture on next slide)
○ developed by Google for internal purpose
○ raw techie interface
○ code review mechanics

ESS is also using cloud hosting for open source projects on GitHub
 (GitLab-like system) and BitBucket (Atlassian product)

git repository structure: what products have
you used; what are their differences

10

git repository structure: what products have
you used; what are their differences

11

git repository structure: what products have
you used; what are their differences

12

Experience with uTCA

13

● Places: DESY, ESS
● Around 10 years experience with MTCA standards,
● Experience in the AMC, RTM modules design and production for LLRF and other

systems,
● Experience in the FW as well as driver and software (DOOCS/EPICS)

development, implementation and deployment,
● Pros:

○ growing standard originating from the telecom industry (ATCA) - promising lifetime,
○ fast growing vendors community that can provide COTS solutions for majority of

implementation,
○ by definition integrates technologies like Ethernet, PCIe, IPMI and others for fast data

transfer inside the crate and intelligent system management.
● Cons:

○ interoperability between different vendors components not always straightforward,
○ entry cost for small installations may be an issue,
○ specialized state-of-the-art solutions may need to be designed in-house (but then can

be licensed and commercialized),
○ PCIe problems under investigation.

14

Thank You

